This is the first review to have focused on exercise as an add-on strategy in the treatment of MDD. Our findings corroborate some previous observations that were based on few studies and which were difficult to generalize.41,51,73,92,93 Given the results of the present article, it seems that exercise might be an effective strategy to enhance the antidepressant effect of medication treatments. Moreover, we hypothesize that the main role of exercise on treatment-resistant depression is in inducing neurogenesis by increasing BDNF expression, as was demonstrated by several recent studies.
You’ll begin the program with a full-body training split, meaning you’ll train all major bodyparts in each workout (as opposed to “splitting up” your training). Train three days this first week, performing just one exercise per bodypart in each session. It’s important that you have a day of rest between each workout to allow your body to recover; this makes training Monday, Wednesday and Friday—with Saturday and Sunday being rest days—a good approach.
Conclusions: Rediscovering the Western mind–body exercise movement is hoped to facilitate official healthcare establishment recognition of this kind of training as an integral entity. This may widen research opportunities and consolidate approaches toward: optimal musculoskeletal rehabilitation and injury prevention, promotion of a healthy active lifestyle environment in the modern world, and enhancement of the natural pain-free human athletic look, feel, and performance.
It is well known that exercise in the older population may prevent several diseases [1–4]. Reduced physical activity impairs the quality of life in elderly people with Alzheimer's Disease [4], Parkinson's Disease [5], and Depressive Disorders [6]. Moreover, musculoskeletal, cardiopulmonary, and cerebrovascular decline are associated with poor physical fitness because of the cumulative effects of illness, multiple drug intake, fatigue, and bed rest [7, 8]. The effects of physical activity and exercise programs on fitness and health-related quality of life (HRQOL) in elderly adults have been widely studied by several authors [9–11]. De Vries et al. [11] conducted a meta-analysis focusing on elderly patients with mobility problems and/or multimorbidity. Eighteen articles describing a wide variety of actions were analyzed. Most used a multicomponent training program focusing on the combination of strength, balance, and endurance training. In 9 of the 18 studies included, interventions were supervised by a physical therapist. Intensity of the intervention was not reported and the duration of the intervention varied from 5 weeks to 18 months. This meta-analysis concluded that, considering quality of life, the exercise versus no-exercise studies found no significant effects. High-intensity exercise appears to be somewhat more effective in improving physical functioning than low-intensity exercise. These positive effects are of great value in the patient population but the most effective type of intervention remains unclear. Brovold et al. [7] recently examined the effects of high-intensity training versus home-based exercise programs using the Norwegian Ullevaal Model [12] on a group of over-65-year-olds after discharge from hospital. These authors based their study on the Swedish Friskis-Svettis model [13] which was designed by Johan Holmsater for patients with coronaropathy to promote their return to work and everyday activities and improve their prognoses. This model includes three intervals of high intensity and two intervals of moderate intensity, each one lasting for 5 to 10 minutes. Included in each is coordination. Exercises consist of simple aerobic dance movements and involve the use of both upper and lower extremities to challenge postural control [13]. Exercise intensity was adjusted using the Borg Rating of Perceived Exertion (RPE) Scale. Moderate intensity was set between 11 and 13, and high intensity was set between 15 and 17 on the Borg Scale.
×