Many exercise interventions have been conducted under controlled laboratory conditions [9], but we do not know how older adults prefer to exercise when they are not under controlled settings and are free to choose type, location and social setting (e.g. alone vs. together with others) of exercise. Furthermore, it has been shown that high-intensity interval training (HIIT) can induce superior changes in health-related markers compared to continuous moderate-intensity training (MCT) [10–13], also in older adults [14, 15]. The scientific interest in HIIT has greatly increased during recent years [9], but larger and longer studies under free-living conditions are needed to investigate whether HIIT is feasible as a public health strategy among older adults [9, 16]. Therefore, detailed information about older adults exercise patterns with MCT versus HIIT outside laboratory conditions is of particular interest.
This exercise is similar in movement to the back squat; however, the bar sits in the front rack position across the collarbones and shoulders of the athlete. HOW TO DO IT: As you drive back up, it is imperative that you raise your elbows to the sky to keep the bar in the correct position. The core should be tight to prevent the back from rounding. If you have mobility issues in the front rack position, you can cross your forearms in front of your body, parallel to the ground. MUSCLES USED: Glutes, quads, hamstrings, calves and core.

It is well known that exercise in the older population may prevent several diseases [1–4]. Reduced physical activity impairs the quality of life in elderly people with Alzheimer's Disease [4], Parkinson's Disease [5], and Depressive Disorders [6]. Moreover, musculoskeletal, cardiopulmonary, and cerebrovascular decline are associated with poor physical fitness because of the cumulative effects of illness, multiple drug intake, fatigue, and bed rest [7, 8]. The effects of physical activity and exercise programs on fitness and health-related quality of life (HRQOL) in elderly adults have been widely studied by several authors [9–11]. De Vries et al. [11] conducted a meta-analysis focusing on elderly patients with mobility problems and/or multimorbidity. Eighteen articles describing a wide variety of actions were analyzed. Most used a multicomponent training program focusing on the combination of strength, balance, and endurance training. In 9 of the 18 studies included, interventions were supervised by a physical therapist. Intensity of the intervention was not reported and the duration of the intervention varied from 5 weeks to 18 months. This meta-analysis concluded that, considering quality of life, the exercise versus no-exercise studies found no significant effects. High-intensity exercise appears to be somewhat more effective in improving physical functioning than low-intensity exercise. These positive effects are of great value in the patient population but the most effective type of intervention remains unclear. Brovold et al. [7] recently examined the effects of high-intensity training versus home-based exercise programs using the Norwegian Ullevaal Model [12] on a group of over-65-year-olds after discharge from hospital. These authors based their study on the Swedish Friskis-Svettis model [13] which was designed by Johan Holmsater for patients with coronaropathy to promote their return to work and everyday activities and improve their prognoses. This model includes three intervals of high intensity and two intervals of moderate intensity, each one lasting for 5 to 10 minutes. Included in each is coordination. Exercises consist of simple aerobic dance movements and involve the use of both upper and lower extremities to challenge postural control [13]. Exercise intensity was adjusted using the Borg Rating of Perceived Exertion (RPE) Scale. Moderate intensity was set between 11 and 13, and high intensity was set between 15 and 17 on the Borg Scale.
×