Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For our full ranking methodology, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.
Data were analysed using three different methods: visual inspection, parametric statistics and calculation of sensitivity for both OTS and NFO detection. Because the sample size was rather small (ie, maximal 5 for each group), data were first inspected visually. Parametric statistics and sensitivity calculation were used to support conclusions from visual inspection of the data. For the purpose of visual inspection, we created graphs with averages and SE for both the OTS and the NFO groups.
Thus, little is known about the effects of monitored vigorous exercise in elderly people. While significant benefits for basic motor tasks (such as balance and gait) can be achieved through different kinds of physical activity (i.e., stretching exercises, treadmill, Pilates, and strength and balance training), no conclusive relationship has been proven between its intensity and such improvements. Recently, Pau et al. [14] reported that spatiotemporal gait parameters and sit-to-stand performance significantly improve through vigorous (but not light) exercises, thus suggesting that higher levels of intensity might be more suitable in generally improving static and dynamic daily motor tasks.