The European Commission - DG EAC - Directorate General for Education and Culture - has dedicated programs and funds for HEPA - Health Enhancing Physical Activity projects[134] within its Horizon 2020 and Erasmus+ program, as research showed that too many Europeans are not physically active enough. Financing is available for increased collaboration between players active in this field across the EU and around the world, the promotion of HEPA in the EU and its partner countries and the European Sports Week. The DG EAC regularly publishes a Eurobarometer on sport and physical activity.
Neuromuscular function tests were performed pre and post-exercise to quantify muscle fatigue. As previous studies documented the extent of isometric muscle fatigue induced by OLDE [8, 11, 17, 18], we chose to focus only on isokinetic muscle fatigue. Therefore, knee extensors (KE) MVCs were performed at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s pre (after the warm-up) and post-exercise (13 ± 4s after exhaustion). Subjects were asked to perform two maximal isokinetic knee extensions at each angular velocity (starting position corresponded to knee angle at 90 deg; range of motion was the same as the OLDE). The highest peak torque value of the two trials was considered, and a 20 s recovery was set between each set of KE MVCs. The order of contractions was randomized between sessions as follow (60-100-140 deg/s, 100-140-60 deg/s or 140-60-100 deg/s) and identical for testing pre and post-exercise of the same session. This randomization allows obtaining a time course of KE MVC torque recovery following the time to exhaustion test at each angular velocity was obtained at a different time point at each session: either shortly after exhaustion (13 ± 4 s after exhaustion), 20 s following exhaustion test (P20) and 40 s following exhaustion test (P40). An overview of timing can be found in Fig 1. Twenty seconds after completion of the last KE MVC, a maximal isometric MVC of the knee flexors was performed (isometric KF MVC). Visual feedback of the torque and strong verbal encouragement were provided for each MVC [please see reference 9 for more details].
Once you become more comfortable with the technique, you can try it while sitting up. Chickedantz says it will change your body by alleviating anxiety and stress, fix your posture, alleviate pain and strengthen abdominal and intestinal muscles. On a similar note, you can make the most of your stuck-in-a-seat time with these 21 Tricks to Lose Weight While Sitting Down!
It is well known that exercise in the older population may prevent several diseases [1–4]. Reduced physical activity impairs the quality of life in elderly people with Alzheimer's Disease [4], Parkinson's Disease [5], and Depressive Disorders [6]. Moreover, musculoskeletal, cardiopulmonary, and cerebrovascular decline are associated with poor physical fitness because of the cumulative effects of illness, multiple drug intake, fatigue, and bed rest [7, 8]. The effects of physical activity and exercise programs on fitness and health-related quality of life (HRQOL) in elderly adults have been widely studied by several authors [9–11]. De Vries et al. [11] conducted a meta-analysis focusing on elderly patients with mobility problems and/or multimorbidity. Eighteen articles describing a wide variety of actions were analyzed. Most used a multicomponent training program focusing on the combination of strength, balance, and endurance training. In 9 of the 18 studies included, interventions were supervised by a physical therapist. Intensity of the intervention was not reported and the duration of the intervention varied from 5 weeks to 18 months. This meta-analysis concluded that, considering quality of life, the exercise versus no-exercise studies found no significant effects. High-intensity exercise appears to be somewhat more effective in improving physical functioning than low-intensity exercise. These positive effects are of great value in the patient population but the most effective type of intervention remains unclear. Brovold et al. [7] recently examined the effects of high-intensity training versus home-based exercise programs using the Norwegian Ullevaal Model [12] on a group of over-65-year-olds after discharge from hospital. These authors based their study on the Swedish Friskis-Svettis model [13] which was designed by Johan Holmsater for patients with coronaropathy to promote their return to work and everyday activities and improve their prognoses. This model includes three intervals of high intensity and two intervals of moderate intensity, each one lasting for 5 to 10 minutes. Included in each is coordination. Exercises consist of simple aerobic dance movements and involve the use of both upper and lower extremities to challenge postural control [13]. Exercise intensity was adjusted using the Borg Rating of Perceived Exertion (RPE) Scale. Moderate intensity was set between 11 and 13, and high intensity was set between 15 and 17 on the Borg Scale.