Isokinetic KE MVCs were performed at 60 (panel, A), 100 (panel B) and 140 (panel C) deg/s. Isokinetic KE MVCs were measured pre-exercise (pre, average of all three sessions pre-exercise values), shortly after exhaustion (13 ± 4 s after exhaustion), 20 s following exhaustion test (P20) and 40 s following exhaustion test (P40). Data are presented as mean (SE). * significantly different from pre, $ significantly different from exhaustion and # significantly different from P20, 1 item for P < 0.05 and 3 items for P < 0.001.
From the data mentioned previously, it can be concluded that in NFO and OTS, the neuroendocrine disorder is a hypothalamic dysfunction rather than a malfunction of the peripheral hormonal organs29 and that the distinction between NFO and OTS can be characterised by hypersensitivity versus insensitivity of glucocorticoid receptors. The interactive features of the periphery and the brain could be translated into possible immunological, psychological and endocrinological disturbances.

Alexander shared the main goal of other MMB pioneers, to harmonize normal functional movements; however, he differed in his approach of teaching the movements. According to the Alexander Technique, the development of nervous system control precedes the functional improvements, unlike other MMB schools in which the nervous system control is developed secondarily by doing the exercises in the proper manner.21 Pilates and Alexander [Internet]. Macy JA. Alexander Technique and the Pilates method of movement re-education: A biomechanical perspective. 2010 Dec 6 [cited 2015 Aug 30]. Available from: [Google Scholar] In 1914, Alexander expanded his teaching in New York and returned to England in 1925. By the end of his career, he had cultivated a long list of loyal second-generation teachers who preserved the Alexander Technique legacy and widespread acceptance until today.19,21 Staring J. Frederick Matthias Alexander 1869-1955. The Origins and History of the Alexander Technique. A medical historical analysis of F.M. Alexander’s life, work, technique, and writings. Nijmegen: Radboud Universiteit; 2005.
When stress is chronically induced, as in NFO and OTS, two specific mechanisms could occur: first, when corticosteroid levels are chronically too high, a hypersensitivity of the receptors will occur, this can lead to a disinhibition of CRHproducing neurons, which in turn will lead to an intensified release of ACTH (as seen in the second exercise bout in the NFO athletes). When the chronic stress situation continues and glucocorticoid receptors are chronically activated (which occurs in post-traumatic stress disorder17 and depression),25 a blunted ACTH response to CRH will occur.28

Your body clock, that is. Try to work out at the time you have the most energy, suggests Jason Theodosakis, MD, exercise physiologist at the University of Arizona College of Medicine. If you're a morning person, schedule your fitness activities early in the day; if you perk up as the day goes along, plan your activities in the afternoon or evening.

“I always tell people that you want to learn why you’re doing something—knowing a bunch of moves doesn’t matter as much when don’t you know how to implement them,” explains Cori Lefkowith, Orange County-based personal trainer and founder of Redefining Strength. So even if you’ve got planks and push-ups down, understanding what’s really going on while you’re training can help you reach your goals faster. We’ve decoded 25 common fitness terms for you so that you can work out with confidence and get the most out of your fitness routine.

In line with Martin and colleagues [29] we found that women more often engaged in walking, swimming and dancing compared to men, while men more often performed jogging, cycling and winter sports. Our data also showed that men performed a higher amount of sessions with domestic activities and combined endurance and resistance training compared to women. The sex differences were the same in both training groups, indicating that disparities in type of exercise between older women and men are independent of the exercise intensity they are instructed to perform.

These leisurely pursuits have their place, but there’s no substitute for the intensity of intervals and strength training or plyometrics. “When you reduce your intensity, athletic performance declines,” he says. “Cardiovascular fitness and other physiological metrics drop off.” Bone density suffers, too — particularly in women. In short, when you stop pushing yourself, you’ll become less fit, less healthy.
Figure 1 Squat. Checkley9 Checkley E. A natural method of physical training. New York (NY): William C. Bryant & Co.; 1890. [Google Scholar] and Randell, reproduced with kind permission of Wellcome Library. Demonstrated by Barbara Mortimer Thomas.26 Wellcome Library [Internet]. Rodway H. Training for childbirth - and after (1940). 2015 Sep 24 [cited 2015 Oct 3]. Available from: [Google Scholar]

Exercise was defined as planned, structured activities, for instance going for walks, skiing, swimming and doing sports, but also as unplanned activities that the participants experienced as exercise. The participants were asked to fill in exercise logs immediately after each exercise session they performed throughout the year and send them to the research center either in prepaid envelopes monthly, or to use internet-based forms following each exercise session [21]. Exercise frequency was calculated as the mean number of sessions reported per week during the year. To assess intensity of exercise the participants reported their subjective RPE on a Borg scale ranging from 6 to 20 [20]. The participants were asked to report the mean intensity level during the exercise session. Ratings from 6 to 10 were classified as low intensity, 11 to 14 as moderate intensity, and 15 to 20 as high intensity. Duration of exercise was measured with a 4-point scale: less than 15 min, 15–29 min, 30 min to 1 h, and more than 1 h. Less than 15 min and 15–29 min was combined due to a low response rate on these response options (1.1 and 8.7% of the total number of exercise sessions, respectively).
We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.
The VE group consisted of 8 women and 12 men (age 69.6 ± 3.9 years; weight 70.7 ± 12.1 kg; height 161.3 ± 6.9 cm). The control group consisted of 6 women and 14 men (age 71.2 ± 3.7 years; weight 76.1 ± 12.3 kg; height 167.5 ± 9.8 cm). Only 20 subjects of the VE group and 8 of the control group correctly completed the trials (see Figure 1 and Limitation of the Study paragraph). Adherence to protocol of the VE group was checked daily by our motor scientist by means of a daily record where he noted the week and participation number, the mean HR of the sessions, the type of exercises, and the number of repetitions per set carried out. During the training period, no adverse events such as dizziness, musculoskeletal pain, or cardiovascular issues were recorded. After 12 weeks, there were significant improvements in strength, flexibility, balance, and agility tested by SFT. T0-T1 differences are shown in Figures ​Figures22 and ​and3.3. Namely, 5 tests out of 6 showed significant improvement: Chair Stand (T0 12.4 ± 2.4; T1 13.5 ± 2.6, p < 0.01), Arm Curl (T0 14.2 ± 3.6; T1 16.6 ± 3.6, p < 0.01), 2 min step (T0 98.2 ± 15.7; T1 108.9 ± 16.2, p < 0.01), Chair Sit-and-Reach (T0 −9.9 ± 7.7 cm; T1 1.7 ± 6.3 cm, p < 0.01), and Back Scratch (T0 −15.8 ± 10.9 cm; T1 −8.4 ± 13.1 cm, p < 0.01). Conversely, the 8-foot up and go test (T0 6.5 ± 7.6 sec; T1 4.5 ± 0.6 sec, p > 0.05) showed no significant statistical difference due to a high SD in T0 assessment.