Neuromuscular function tests were performed pre and post-exercise to quantify muscle fatigue. As previous studies documented the extent of isometric muscle fatigue induced by OLDE [8, 11, 17, 18], we chose to focus only on isokinetic muscle fatigue. Therefore, knee extensors (KE) MVCs were performed at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s pre (after the warm-up) and post-exercise (13 ± 4s after exhaustion). Subjects were asked to perform two maximal isokinetic knee extensions at each angular velocity (starting position corresponded to knee angle at 90 deg; range of motion was the same as the OLDE). The highest peak torque value of the two trials was considered, and a 20 s recovery was set between each set of KE MVCs. The order of contractions was randomized between sessions as follow (60-100-140 deg/s, 100-140-60 deg/s or 140-60-100 deg/s) and identical for testing pre and post-exercise of the same session. This randomization allows obtaining a time course of KE MVC torque recovery following the time to exhaustion test at each angular velocity was obtained at a different time point at each session: either shortly after exhaustion (13 ± 4 s after exhaustion), 20 s following exhaustion test (P20) and 40 s following exhaustion test (P40). An overview of timing can be found in Fig 1. Twenty seconds after completion of the last KE MVC, a maximal isometric MVC of the knee flexors was performed (isometric KF MVC). Visual feedback of the torque and strong verbal encouragement were provided for each MVC [please see reference 9 for more details].
15-Minute HIIT With Maggie Binkley. If you’re looking to get your heart-rate up, but are limited on time, this 15-minute video is for you. Maggie Binkley takes you through these short workouts each day of the week (Monday through Friday), focusing on specific areas on different days, and including a few full-body routines as well. Come Saturday, you’ll be ready to cheers to your accomplishments!
Just shy of an hour long, this video is a killer aerobic kickboxing workout. You’ll throw punches and kicks in supercharged sequences as you follow along with the ebullient Billy Blanks. Don’t be surprised if you start talking back to the screen, especially when Blanks looks straight into the camera and declares, “I see you at home! Keep going!” Talk about motivation.
The recent “consensus statement” of the European College of Sport Science indicates that the difference between NFO and OTS is the amount of time needed for performance restoration and not the type or duration of training stress or degree of impairment.1 In essence, it is generally thought that symptoms of OTS, such as fatigue, performance decline and mood disturbances, are more severe than those of NFO. However, there is no scientific evidence to either confirm or refute this suggestion.1 The distinction between NFO and OTS is most of the time based on “time to recover”. Hence, there is a need for objective, immediately available evidence that the athlete is indeed experiencing OTS.

Each reliability session took place on a Monday, Wednesday and Friday morning at the same time and within the same week. All subjects were given written instructions to drink 35 ml of water per kilogram of body weight, sleep for at least 7 h, refrain from the consumption of alcohol, and avoid any vigorous exercise the day before each visit. Participants were also instructed to avoid any caffeine and nicotine for at least 3 h before testing. Finally, subjects were instructed to consume a set breakfast (2 slices of toast spread with margarine or butter, 250 ml of orange juice, and a banana) 1 h before all testing sessions. At each visit to the lab, subjects were asked to complete a pre-test checklist to ascertain that they had complied with the instructions given to them, and were asked to report any pain or soreness experienced in their leg (to check for the presence of previous session-induced muscle damage). None of our subjects reported leg muscle pain or soreness at the beginning of each session.
Recruitment criteria were one or both of sedentariness and dysmetabolism. Thus, we selected subjects who were not physically active or involved in any exercise program; that is, they had a sedentary lifestyle. Moreover, before entering the study, they were carefully screened for metabolic problems which attested a dysmetabolic status, as increased levels of plasma glucose, free fatty acids, triglyceride, and urate in fasting state. Both criteria were verified by means of family doctor databases of subjects.